Mutation of H63 and its catalytic affect on the methionine aminopeptidase from Escherichia coli.

نویسندگان

  • Sanghamitra Mitra
  • Brian Bennett
  • Richard C Holz
چکیده

In order to gain insight into the mechanistic role of a flexible exterior loop near the active site, made up of Y62, H63, G64, and Y65, that has been proposed to play an important role in substrate binding and recognition in the methionyl aminopeptidase from Escherichia coli (EcMetAP-I), the H63A enzyme was prepared. Mutation of H63 to alanine does not affect the ability of the enzyme to bind divalent metal ions. The specific activity of H63A EcMetAP-I was determined using four different substrates of varying lengths, namely, l-Met-p-NA, MAS, MGMM and MSSHRWDW. For the smallest/shortest substrate (l-Met-p-NA) the specific activity decreased nearly seven fold but as the peptide length increased, the specific activity also increased and became comparable to WT EcMetAP-I. This decrease in specific activity is primarily due to a decrease in the observed k(cat) values, which decreases nearly sixty-fold for l-Met-p-NA while only a four-fold decrease is observed for the tri- and tetra-peptide substrates. Interestingly, no change in k(cat) was observed when the octa-peptide MSSHRWDW was used as a substrate. These data suggest that H63 affects the hydrolysis of small peptide substrates whereas large peptides can overcome the observed loss in binding energy, as predicted from K(m) values, by additional hydrophilic and hydrophobic interactions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Amino acid residues involved in the functional integrity of Escherichia coli methionine aminopeptidase.

Amino acid residues in the metal-binding and putative substrate-binding sites of Escherichia coli methionine aminopeptidase (MAP) were mutated, and their effects on the function of the enzyme were investigated. Substitution of any amino acid residue at the metal-binding site resulted in complete loss of the two cobalt ions bound to the protein and diminished the enzyme activity. However, only C...

متن کامل

Using directed evolution to improve the solubility of the Cterminal domain of Escherichia coli aminopeptidaseP

The Escherichia coli aminopeptidase P (AMPP) is a protease with subunits that consist of two domains. Solution studies have shown that the activity of AMPP is manganese-dependent [1], and structural studies have shown that its active site contains two metals that are coordinated by residues from the C-terminal domain [2]. AMPP has a structure that is similar to that of prolidase and creatinase,...

متن کامل

Crystal structure of aminopeptidase N (proteobacteria alanyl aminopeptidase) from Escherichia coli and conformational change of methionine 260 involved in substrate recognition.

Aminopeptidase N from Escherichia coli is a broad specificity zinc exopeptidase belonging to aminopeptidase clan MA, family M1. The structures of the ligand-free form and the enzyme-bestatin complex were determined at 1.5- and 1.6-A resolution, respectively. The enzyme is composed of four domains: an N-terminal beta-domain (Met(1)-Asp(193)), a catalytic domain (Phe(194)-Gly(444)), a middle beta...

متن کامل

Co-expression of glutathione S-transferase with methionine aminopeptidase: a system of producing enriched N-terminal processed proteins in Escherichia coli.

We describe here an Escherichia coli expression system that produces recombinant proteins enriched in the N-terminal processed form, by using glutathione S-transferase cGSTM1-1 and rGSTT1-1 as models, where c and r refer to chick and rat respectively. Approximately 90% of the cGSTM1-1 or rGSTT1-1 overexpressed in E. coli under the control of a phoA promoter retained the initiator methionine res...

متن کامل

Characterization of two new aminopeptidases in Escherichia coli.

Two genes in the Escherichia coli genome, ypdE and ypdF, have been cloned and expressed, and their products have been purified. YpdF is shown to be a metalloenzyme with Xaa-Pro aminopeptidase activity and limited methionine aminopeptidase activity. Genes homologous to ypdF are widely distributed in bacterial species. The unique feature in the sequences of the products of these genes is a conser...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochimica et biophysica acta

دوره 1794 1  شماره 

صفحات  -

تاریخ انتشار 2009